Abstract:Text-to-image (T2I) diffusion models, renowned for their advanced generative abilities, are extensively utilized in image editing applications, demonstrating remarkable effectiveness. However, achieving precise control over fine-grained attributes still presents considerable challenges. Existing image editing techniques either fail to modify the attributes of an object or struggle to preserve its structure and maintain consistency in other areas of the image. To address these challenges, we propose the Structure-Preserving and Attribute Amplification (SPAA), a training-free method which enables precise control over the color and material transformations of objects by editing the self-attention maps and cross-attention values. Furthermore, we constructed the Attribute Dataset, which encompasses nearly all colors and materials associated with various objects, by integrating multimodal large language models (MLLM) to develop an automated pipeline for data filtering and instruction labeling. Training on this dataset, we present our InstructAttribute, an instruction-based model designed to facilitate fine-grained editing of color and material attributes. Extensive experiments demonstrate that our method achieves superior performance in object-level color and material editing, outperforming existing instruction-based image editing approaches.
Abstract:Foot trajectory planning for dry adhesion legged climbing robots presents challenges, as the phases of foot detachment, swing, and adhesion significantly influence the adhesion and detachment forces essential for stable climbing. To tackle this, an end-to-end foot trajectory and force optimization framework (FTFOF) is proposed, which optimizes foot adhesion and detachment forces through trajectory adjustments. This framework accepts general foot trajectory constraints and user-defined parameters as input, ultimately producing an optimal single foot trajectory. It integrates three-segment $C^2$ continuous Bezier curves, tailored to various foot structures, enabling the generation of effective climbing trajectories. A dilate-based GRU predictive model establishes the relationship between foot trajectories and the corresponding foot forces. Multi-objective optimization algorithms, combined with a redundancy hierarchical strategy, identify the most suitable foot trajectory for specific tasks, thereby ensuring optimal performance across detachment force, adhesion force and vibration amplitude. Experimental validation on the quadruped climbing robot MST-M3F showed that, compared to commonly used trajectories in existing legged climbing robots, the proposed framework achieved reductions in maximum detachment force by 28 \%, vibration amplitude by 82 \%, which ensures the stable climbing of dry adhesion legged climbing robots.
Abstract:Accurate click-through rate (CTR) prediction is vital for online advertising and recommendation systems. Recent deep learning advancements have improved the ability to capture feature interactions and understand user interests. However, optimizing the embedding layer often remains overlooked. Embedding tables, which represent categorical and sequential features, can become excessively large, surpassing GPU memory limits and necessitating storage in CPU memory. This results in high memory consumption and increased latency due to frequent GPU-CPU data transfers. To tackle these challenges, we introduce a Model-agnostic Embedding Compression (MEC) framework that compresses embedding tables by quantizing pre-trained embeddings, without sacrificing recommendation quality. Our approach consists of two stages: first, we apply popularity-weighted regularization to balance code distribution between high- and low-frequency features. Then, we integrate a contrastive learning mechanism to ensure a uniform distribution of quantized codes, enhancing the distinctiveness of embeddings. Experiments on three datasets reveal that our method reduces memory usage by over 50x while maintaining or improving recommendation performance compared to existing models. The implementation code is accessible in our project repository https://github.com/USTC-StarTeam/MEC.
Abstract:The paper explores the performance of LLMs in the context of multi-dimensional analytic writing assessments, i.e. their ability to provide both scores and comments based on multiple assessment criteria. Using a corpus of literature reviews written by L2 graduate students and assessed by human experts against 9 analytic criteria, we prompt several popular LLMs to perform the same task under various conditions. To evaluate the quality of feedback comments, we apply a novel feedback comment quality evaluation framework. This framework is interpretable, cost-efficient, scalable, and reproducible, compared to existing methods that rely on manual judgments. We find that LLMs can generate reasonably good and generally reliable multi-dimensional analytic assessments. We release our corpus for reproducibility.
Abstract:Acoustic cameras have found many applications in practice. Accurate and reliable extrinsic calibration of the microphone array and visual sensors within acoustic cameras is crucial for fusing visual and auditory measurements. Existing calibration methods either require prior knowledge of the microphone array geometry or rely on grid search which suffers from slow iteration speed or poor convergence. To overcome these limitations, in this paper, we propose an automatic calibration technique using a calibration board with both visual and acoustic markers to identify each microphone position in the camera frame. We formulate the extrinsic calibration problem (between microphones and the visual sensor) as a nonlinear least squares problem and employ a batch optimization strategy to solve the associated problem. Extensive numerical simulations and realworld experiments show that the proposed method improves both the accuracy and robustness of extrinsic parameter calibration for acoustic cameras, in comparison to existing methods. To benefit the community, we open-source all the codes and data at https://github.com/AISLAB-sustech/AcousticCamera.
Abstract:Promptable segmentation foundation models have emerged as a transformative approach to addressing the diverse needs in medical images, but most existing models require expensive computing, posing a big barrier to their adoption in clinical practice. In this work, we organized the first international competition dedicated to promptable medical image segmentation, featuring a large-scale dataset spanning nine common imaging modalities from over 20 different institutions. The top teams developed lightweight segmentation foundation models and implemented an efficient inference pipeline that substantially reduced computational requirements while maintaining state-of-the-art segmentation accuracy. Moreover, the post-challenge phase advanced the algorithms through the design of performance booster and reproducibility tasks, resulting in improved algorithms and validated reproducibility of the winning solution. Furthermore, the best-performing algorithms have been incorporated into the open-source software with a user-friendly interface to facilitate clinical adoption. The data and code are publicly available to foster the further development of medical image segmentation foundation models and pave the way for impactful real-world applications.
Abstract:Recent low-rank training methods, such as GaLore, have significantly reduced the memory required to optimize large language models (LLMs). However, these methods often suffer from time-consuming low-rank projection estimations. In particular, the singular value decomposition (SVD) in GaLore can consume more than 80\% of the total training time. To address this issue, we propose GaLore$+$, which uses cross-head low-rank projection to reduce the substantial time consumption in estimating low-rank projections for multi-head attention. In addition, we employ randomized subspace iteration to achieve fast SVD. To further enhance performance, we propose sparsely coded residuals to reduce the errors caused by low-rank approximation on the first- and second-order moments of the optimizers and weight updates. We evaluate GaLore$+$ on arithmetic reasoning and natural language generation datasets. Our experiments demonstrate that GaLore$+$ delivers superior performance while achieving approximately $4\times$ fine-tuning speed compared to vanilla GaLore.
Abstract:LiDAR is widely used in Simultaneous Localization and Mapping (SLAM) and autonomous driving. The LiDAR odometry is of great importance in multi-sensor fusion. However, in some unstructured environments, the point cloud registration cannot constrain the poses of the LiDAR due to its sparse geometric features, which leads to the degeneracy of multi-sensor fusion accuracy. To address this problem, we propose a novel real-time approach to sense and compensate for the degeneracy of LiDAR. Firstly, this paper introduces the degeneracy factor with clear meaning, which can measure the degeneracy of LiDAR. Then, the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) clustering method adaptively perceives the degeneracy with better environmental generalization. Finally, the degeneracy perception results are utilized to fuse LiDAR and IMU, thus effectively resisting degeneracy effects. Experiments on our dataset show the method's high accuracy and robustness and validate our algorithm's adaptability to different environments and LiDAR scanning modalities.
Abstract:Collaboration is a cornerstone of society. In the real world, human teammates make use of multi-sensory data to tackle challenging tasks in ever-changing environments. It is essential for embodied agents collaborating in visually-rich environments replete with dynamic interactions to understand multi-modal observations and task specifications. To evaluate the performance of generalizable multi-modal collaborative agents, we present TeamCraft, a multi-modal multi-agent benchmark built on top of the open-world video game Minecraft. The benchmark features 55,000 task variants specified by multi-modal prompts, procedurally-generated expert demonstrations for imitation learning, and carefully designed protocols to evaluate model generalization capabilities. We also perform extensive analyses to better understand the limitations and strengths of existing approaches. Our results indicate that existing models continue to face significant challenges in generalizing to novel goals, scenes, and unseen numbers of agents. These findings underscore the need for further research in this area. The TeamCraft platform and dataset are publicly available at https://github.com/teamcraft-bench/teamcraft.
Abstract:Table-based reasoning has garnered substantial research interest, particularly in its integration with Large Language Model (LLM) which has revolutionized the general reasoning paradigm. Numerous LLM-based studies introduce symbolic tools (e.g., databases, Python) as assistants to extend human-like abilities in structured table understanding and complex arithmetic computations. However, these studies can be improved better in simulating human cognitive behavior when using symbolic tools, as they still suffer from limitations of non-standard logical splits and constrained operation pools. In this study, we propose PoTable as a novel table-based reasoning method that simulates a human tabular analyst, which integrates a Python interpreter as the real-time executor accompanied by an LLM-based operation planner and code generator. Specifically, PoTable follows a human-like logical stage split and extends the operation pool into an open-world space without any constraints. Through planning and executing in each distinct stage, PoTable standardly completes the entire reasoning process and produces superior reasoning results along with highly accurate, steply commented and completely executable programs. Accordingly, the effectiveness and explainability of PoTable are fully demonstrated. Extensive experiments over three evaluation datasets from two public benchmarks on two backbones show the outstanding performance of our approach. In particular, GPT-based PoTable achieves over 4% higher absolute accuracy than runner-ups on all evaluation datasets.