Abstract:In this report, we introduce ERNIE 5.0, a natively autoregressive foundation model desinged for unified multimodal understanding and generation across text, image, video, and audio. All modalities are trained from scratch under a unified next-group-of-tokens prediction objective, based on an ultra-sparse mixture-of-experts (MoE) architecture with modality-agnostic expert routing. To address practical challenges in large-scale deployment under diverse resource constraints, ERNIE 5.0 adopts a novel elastic training paradigm. Within a single pre-training run, the model learns a family of sub-models with varying depths, expert capacities, and routing sparsity, enabling flexible trade-offs among performance, model size, and inference latency in memory- or time-constrained scenarios. Moreover, we systematically address the challenges of scaling reinforcement learning to unified foundation models, thereby guaranteeing efficient and stable post-training under ultra-sparse MoE architectures and diverse multimodal settings. Extensive experiments demonstrate that ERNIE 5.0 achieves strong and balanced performance across multiple modalities. To the best of our knowledge, among publicly disclosed models, ERNIE 5.0 represents the first production-scale realization of a trillion-parameter unified autoregressive model that supports both multimodal understanding and generation. To facilitate further research, we present detailed visualizations of modality-agnostic expert routing in the unified model, alongside comprehensive empirical analysis of elastic training, aiming to offer profound insights to the community.
Abstract:Learning from negative samples holds great promise for improving Large Language Model (LLM) reasoning capability, yet existing methods treat all incorrect responses as equally informative, overlooking the crucial role of sample quality. To address this, we propose Plausible Negative Samples (PNS), a method that synthesizes high-quality negative samples exhibiting expected format and structural coherence while ultimately yielding incorrect answers. PNS trains a dedicated model via reverse reinforcement learning (RL) guided by a composite reward combining format compliance, accuracy inversion, reward model assessment, and chain-of-thought evaluation, generating responses nearly indistinguishable from correct solutions. We further validate PNS as a plug-and-play data source for preference optimization across three backbone models on seven mathematical reasoning benchmarks. Results demonstrate that PNS consistently outperforms other negative sample synthesis methods, achieving an average improvement of 2.03% over RL-trained models.
Abstract:Poisson-distributed latent variable models are widely used in computational neuroscience, but differentiating through discrete stochastic samples remains challenging. Two approaches address this: Exponential Arrival Time (EAT) simulation and Gumbel-SoftMax (GSM) relaxation. We provide the first systematic comparison of these methods, along with practical guidance for practitioners. Our main technical contribution is a modification to the EAT method that theoretically guarantees an unbiased first moment (exactly matching the firing rate), and reduces second-moment bias. We evaluate these methods on their distributional fidelity, gradient quality, and performance on two tasks: (1) variational autoencoders with Poisson latents, and (2) partially observable generalized linear models, where latent neural connectivity must be inferred from observed spike trains. Across all metrics, our modified EAT method exhibits better overall performance (often comparable to exact gradients), and substantially higher robustness to hyperparameter choices. Together, our results clarify the trade-offs between these methods and offer concrete recommendations for practitioners working with Poisson latent variable models.
Abstract:Since the recent Covid-19 pandemic, mobile manipulators and humanoid assistive robots with higher levels of autonomy have increasingly been adopted for patient care and living assistance. Despite advancements in autonomy, these robots often struggle to perform reliably in dynamic and unstructured environments and require human intervention to recover from failures. Effective human-robot collaboration is essential to enable robots to receive assistance from the most competent operator, in order to reduce their workload and minimize disruptions in task execution. In this paper, we propose an adaptive method for allocating robotic failures to human operators (ARFA). Our proposed approach models the capabilities of human operators, and continuously updates these beliefs based on their actual performance for failure recovery. For every failure to be resolved, a reward function calculates expected outcomes based on operator capabilities and historical data, task urgency, and current workload distribution. The failure is then assigned to the operator with the highest expected reward. Our simulations and user studies show that ARFA outperforms random allocation, significantly reducing robot idle time, improving overall system performance, and leading to a more distributed workload among operators.
Abstract:Collaborative perception improves 3D understanding by fusing multi-agent observations, yet intermediate-feature sharing faces strict bandwidth constraints as dense BEV features saturate V2X links. We observe that collaborators view the same physical world, making their features strongly correlated; thus receivers only need innovation beyond their local context. Revisiting this from a distributed source coding perspective, we propose V2X-DSC, a framework with a Conditional Codec (DCC) for bandwidth-constrained fusion. The sender compresses BEV features into compact codes, while the receiver performs conditional reconstruction using its local features as side information, allocating bits to complementary cues rather than redundant content. This conditional structure regularizes learning, encouraging incremental representation and yielding lower-noise features. Experiments on DAIR-V2X, OPV2V, and V2X-Real demonstrate state-of-the-art accuracy-bandwidth trade-offs under KB-level communication, and generalizes as a plug-and-play communication layer across multiple fusion backbones.
Abstract:Metric learning is central to retrieval, yet its effects on embedding geometry and optimization dynamics are not well understood. We introduce a diagnostic framework, VARIANCE (intra-/inter-class variance) and GREEDINESS (active ratio and gradient norms), to compare seven representative losses, i.e., Contrastive, Triplet, N-pair, InfoNCE, ArcFace, SCL, and CCL, across five image-retrieval datasets. Our analysis reveals that Triplet and SCL preserve higher within-class variance and clearer inter-class margins, leading to stronger top-1 retrieval in fine-grained settings. In contrast, Contrastive and InfoNCE compact embeddings are achieved quickly through many small updates, accelerating convergence but potentially oversimplifying class structures. N-pair achieves a large mean separation but with uneven spacing. These insights reveal a form of efficiency-granularity trade-off and provide practical guidance: prefer Triplet/SCL when diversity preservation and hard-sample discrimination are critical, and Contrastive/InfoNCE when faster embedding compaction is desired.
Abstract:While model-based reinforcement learning (MBRL) improves sample efficiency by learning world models from raw observations, existing methods struggle to generalize across structurally similar scenes and remain vulnerable to spurious variations such as textures or color shifts. From a cognitive science perspective, humans segment continuous sensory streams into discrete events and rely on these key events for decision-making. Motivated by this principle, we propose the Event-Aware World Model (EAWM), a general framework that learns event-aware representations to streamline policy learning without requiring handcrafted labels. EAWM employs an automated event generator to derive events from raw observations and introduces a Generic Event Segmentor (GES) to identify event boundaries, which mark the start and end time of event segments. Through event prediction, the representation space is shaped to capture meaningful spatio-temporal transitions. Beyond this, we present a unified formulation of seemingly distinct world model architectures and show the broad applicability of our methods. Experiments on Atari 100K, Craftax 1M, and DeepMind Control 500K, DMC-GB2 500K demonstrate that EAWM consistently boosts the performance of strong MBRL baselines by 10%-45%, setting new state-of-the-art results across benchmarks. Our code is released at https://github.com/MarquisDarwin/EAWM.
Abstract:Metal artifacts in Dental CBCT severely obscure anatomical structures, hindering diagnosis. Current deep learning for Metal Artifact Reduction (MAR) faces limitations: supervised methods suffer from spectral blurring due to "regression-to-the-mean", while unsupervised ones risk structural hallucinations. Denoising Diffusion Models (DDPMs) offer realism but rely on slow, stochastic iterative sampling, unsuitable for clinical use. To resolve this, we propose the Physically-Grounded Manifold Projection (PGMP) framework. First, our Anatomically-Adaptive Physics Simulation (AAPS) pipeline synthesizes high-fidelity training pairs via Monte Carlo spectral modeling and patient-specific digital twins, bridging the synthetic-to-real gap. Second, our DMP-Former adapts the Direct x-Prediction paradigm, reformulating restoration as a deterministic manifold projection to recover clean anatomy in a single forward pass, eliminating stochastic sampling. Finally, a Semantic-Structural Alignment (SSA) module anchors the solution using priors from medical foundation models (MedDINOv3), ensuring clinical plausibility. Experiments on synthetic and multi-center clinical datasets show PGMP outperforms state-of-the-art methods on unseen anatomy, setting new benchmarks in efficiency and diagnostic reliability. Code and data: https://github.com/ricoleehduu/PGMP.
Abstract:Metal artifacts in Dental CBCT severely obscure anatomical structures, hindering diagnosis. Current deep learning for Metal Artifact Reduction (MAR) faces limitations: supervised methods suffer from spectral blurring due to "regression-to-the-mean", while unsupervised ones risk structural hallucinations. Denoising Diffusion Models (DDPMs) offer realism but rely on slow, stochastic iterative sampling, unsuitable for clinical use. To resolve this, we propose the Physically-Grounded Manifold Projection (PGMP) framework. First, our Anatomically-Adaptive Physics Simulation (AAPS) pipeline synthesizes high-fidelity training pairs via Monte Carlo spectral modeling and patient-specific digital twins, bridging the synthetic-to-real gap. Second, our DMP-Former adapts the Direct x-Prediction paradigm, reformulating restoration as a deterministic manifold projection to recover clean anatomy in a single forward pass, eliminating stochastic sampling. Finally, a Semantic-Structural Alignment (SSA) module anchors the solution using priors from medical foundation models (MedDINOv3), ensuring clinical plausibility. Experiments on synthetic and multi-center clinical datasets show PGMP outperforms state-of-the-art methods on unseen anatomy, setting new benchmarks in efficiency and diagnostic reliability. Code and data: https://github.com/ricoleehduu/PGMP
Abstract:Numerous studies attempt to mitigate classification bias caused by class imbalance. However, existing studies have yet to explore the collaborative optimization of imbalanced learning and model training. This constraint hinders further performance improvements. To bridge this gap, this study proposes a collaborative optimization Boosting model of multiclass imbalanced learning. This model is simple but effective by integrating the density factor and the confidence factor, this study designs a noise-resistant weight update mechanism and a dynamic sampling strategy. Rather than functioning as independent components, these modules are tightly integrated to orchestrate weight updates, sample region partitioning, and region-guided sampling. Thus, this study achieves the collaborative optimization of imbalanced learning and model training. Extensive experiments on 20 public imbalanced datasets demonstrate that the proposed model significantly outperforms eight state-of-the-art baselines. The code for the proposed model is available at: https://github.com/ChuantaoLi/DARG.